Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Plant Soil ; 498(1-2): 325-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665878

RESUMO

Background and aims: Partitioning the measured net ecosystem carbon dioxide (CO2) exchange into gross primary productivity (GPP) and ecosystem respiration remains a challenge, which scientists try to tackle by using the properties of the trace gas carbonyl sulfide (COS). Its similar pathway into and within the leaf makes it a potential photosynthesis proxy. The application of COS as an effective proxy depends, among other things, on a robust inventory of potential COS sinks and sources within ecosystems. While the soil received some attention during the last couple of years, the role of plant roots is mostly unknown. In our study, we investigated the effects of live roots on the soil COS exchange. Methods: An experimental setup was devised to measure the soil and the belowground plant parts of young beech trees observed over the course of 9 months. Results: During the growing season, COS emissions were significantly lower when roots were present compared to chambers only containing soil, while prior to the growing season, with photosynthetically inactive trees, the presence of roots increased COS emissions. The difference in the COS flux between root-influenced and uninfluenced soil was fairly constant within each month, with diurnal variations in the COS flux driven primarily by soil temperature changes rather than the presence or absence of roots. Conclusion: While the mechanisms by which roots influence the COS exchange are largely unknown, their contribution to the overall ground surface COS exchange should not be neglected when quantifying the soil COS exchange. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06438-0.

2.
Agric For Meteorol ; 290: 108026, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32565589

RESUMO

Time series of stem diameter variations (SDVs) recorded by dendrometers are composed of two components: (i) irreversible radial stem growth and (ii) reversible stem shrinking and swelling caused by dynamics in water storage in elastic tissues outside the cambium. However, SDVs measured over dead outer bark (periderm) could also be affected by absorption and evaporation of water from remaining dead bark layers after smoothing the stem surface to properly mount dendrometers. Therefore, the focus of this study was to determine the influence of hygroscopicity of a thin dead outer bark layer on the reversible component of dendrometer records of Scots pine (Pinus sylvestris) under field conditions. To accomplish this, SDVs deduced from dendrometers mounted over dead outer bark were compared among living and dead saplings and mature trees. Results revealed that dead trees showed high synchronicity in reversible daily SDVs compared to living trees throughout several growing seasons (mean Pearson correlation coefficient (r) = 0.844 among saplings and r = 0.902 among mature trees, respectively; P<0.001). Furthermore, diurnal and long-term SDVs closely followed changes in relative air humidity (RH) in living and dead trees. A multiple linear regression analysis of environmental influence on SDVs in dead and living trees revealed that the most important predictor of daily SDVs was RH (relative importance 64 %). Hence, results indicate that dendrometers mounted over dead outer bark with a thickness of <4 mm record hygroscopic shrinking and swelling of the bark tissue, which can amplify fluctuations in whole-tree water status. To conclude, hygroscopic processes must be taken into account when extracting intra-annual radial growth, determining environmental drivers of SDVs, and evaluating changes in tree water status from SDVs recorded by dendrometers, which were mounted over even thin dead outer bark layers.

3.
Soil Biol Biochem ; 135: 28-37, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31579268

RESUMO

The viability of carbonyl sulfide (COS) measurements for partitioning ecosystem-scale net carbon dioxide (CO2) fluxes into photosynthesis and respiration critically depends on our knowledge of non-leaf sinks and sources of COS in ecosystems. We combined soil gas exchange measurements of COS and CO2 with next-generation sequencing technology (NGS) to investigate the role of soil microbiota for soil COS exchange. We applied different treatments (litter and glucose addition, enzyme inhibition and gamma sterilization) to soil samples from a temperate grassland to manipulate microbial composition and activity. While untreated soil was characterized by consistent COS uptake, other treatments reduced COS uptake and even turned the soil into a net COS source. Removing biotic processes through sterilization led to positive or zero fluxes. We used NGS to link changes in the COS response to alterations in the microbial community composition, with bacterial data having a higher explanatory power for the measured COS fluxes than fungal data. We found that the genera Arthrobacter and Streptomyces were particularly abundant in samples exhibiting high COS emissions. Our results indicate co-occurring abiotic production and biotic consumption of COS in untreated soil, the latter linked to carbonic anhydrase activity, and a strong dependency of the COS flux on the activity, identity, abundance of and substrate available to microorganisms.

4.
Oecologia ; 183(3): 851-860, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28070699

RESUMO

During recent years, carbonyl sulfide (COS), a trace gas with a similar diffusion pathway into leaves as carbon dioxide (CO2), but with no known "respiration-like" leaf source, has been discussed as a promising new approach for partitioning net ecosystem-scale CO2 fluxes into photosynthesis and respiration. The utility of COS for flux partitioning at the ecosystem scale critically depends on the understanding of non-leaf sources and sinks of COS. This study assessed the contribution of the soil to ecosystem-scale COS fluxes under simulated drought conditions at temperate grassland in the Central Alps. We used transparent steady-state flow-through chambers connected to a quantum cascade laser spectrometer to measure the COS and CO2 gas exchange between the soil surface and the atmosphere. Soils were a source of COS during the day, emissions being mainly driven by incoming solar radiation and to a lesser degree soil temperature. Soil water content had a negligible influence on soil COS exchange and thus the drought and control treatment were statistically not significantly different. Overall, daytime fluxes were large (12.5 ± 13.8 pmol m-2 s-1) in their magnitude and consistently positive compared to the previous studies, which predominantly used dark chambers. Nighttime measurements revealed soil COS fluxes around zero, as did measurements with darkened soil chambers during daytime reinforcing the importance of incoming solar radiation. Our results suggest that abiotic drivers play a key role in controlling in situ soil COS fluxes of the investigated grassland.


Assuntos
Pradaria , Solo , Dióxido de Carbono/metabolismo , Secas , Ecossistema
5.
Soil Biol Biochem ; 83: 138-141, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25859058

RESUMO

Little is known about the effect of decomposer diversity on litter decomposition in alpine areas. Especially under the premise that alpine ecosystems are very sensitive to global change and are currently undergoing extensive land-use changes, a better understanding is needed to predict how environmental change will affect litter decomposition. A mesocosm experiment was conducted to compare the effects of the most common and functionally diverse invertebrates (earthworms, millipedes and sciarid larvae) found in alpine soils on decomposition rates and to assess how decomposer diversity affects litter decomposition. Experimental and estimated (i.e. projected to field decomposer-biomass) litter mass loss was 13-33% higher in the three-species treatment. Notably, the variability in decomposition was greatly reduced when decomposer diversity was high, indicating a portfolio effect. Our results suggest that invertebrate decomposer diversity is essential for sustaining litter decomposition in alpine areas and for the stability of this service.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...